Water Splitting

Water Splitting

Water Splitting

水分裂技术的特征在于使用化学反应将水(H2O)分离成氧气和氢气的过程。可以使用许多不同的技术实现有效的水分裂,包括电解,光合作用,光斑,光催化,放射性,光生物学和热解。随着最新成果集中于使用纳米颗粒和薄膜催化剂在较低反应温度下分离水分,可以证明优化细胞效率至关重要,以优化细胞效率至关重要。经济高效的水分裂是氢气作为替代能源的关键组成部分。该领域的研究将研究和测试转换到氢气经济的可行性。

Photo-oxidation of water

Atomic layer deposition techniques can be used to create high surface area structures for wafer splitting applications. The fabrication of high surface area conducting and transparent frameworks were developed for the photo-oxidation of water (water splitting).

Atomic Layer Deposition (ALD) films using the Savannah® S200 were deposited using the Exposure mode technique for ITO and Fe2O3 on inverse opal structures, to generate a high surface area nanostructure.

ALD Benefits for Water Splitting

  • 3D纳米结构的优异保形性
  • High quality pinhole-free films
  • 纳米胺酸薄膜可用
  • Wide range of functional materials including TCOs, iron oxide, insulators


用于光氧化的高比表面积透明和导电框架。氧化铁Fe2O3,ITO和SiO2通过ALD在反向支架结构上沉积。参考:Riha,S. C,等。ACS Appr Mater inter5,360–367 (2013).

Films

  • Indium-tin oxide (ITO) using InCp, TDMASn, and O3
  • Ferrocene(FE2O3)使用FECP2和O3

Results

  • Highly transparent, large surface area nanolaminate stacks were created for water splitting using ALD techniques.
  • The onset of water oxidation was shifted by -200 mV and the photocurrent at 1.53 V vs. the reversible hydrogen electrode was tripled. (compared with flat photo-anodes).

Greenlight water oxidation via Ti substitution in Fe2O3

Ti合金化用于改善超薄(6nm厚)赤铁矿转化效率,特别是由绿色光子(500-600nm)产生的空穴收集效率。Savannah®S200用于在本研究中存放TiO2和Fe2O3的薄膜。


Fe2O3的钛合金合金用于增加以改善光电化学氧化的催化利用Ref: Kim, D. W. et al. Greenlighting Photoelectrochemical Oxidation of Water by Iron Oxide. ACS Nano 141203161851003 (2014).

Results

  1. Ti替换在超薄Fe2O3我ncreases the lifetime of surface-localized holes.
  2. 用Ti取代的薄膜观察到增加的光电流性能。
  3. Enhanced absorbed photon-to-current efficiency (APCE) was observed, particularly in the 500 – 600 nm range.
  4. 在光学吸收中没有观察到变化。

参考文献 - 最近在Veeco CNT ALD平台上完成的出版物雷竞技官方网址

  1. Dias,P.等人。透明Cuprous氧化物光电阴极使堆叠串联电池用于无偏的水分裂。adv。能量母体。n / a-n / a(2015)。DOI:10.1002 / AENM.201501537
  2. Luo, J. et al. Targeting Ideal Dual‐Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1‐xSe2 Photocathodes. Adv. Energy Mater. (2015). doi:10.1002/aenm.201501520
  3. Landsmann,S.等。水分裂高性能粒子光电池设计指南:氧氮化钛作为模型。Chemsuschem n / a-n / a(2015)。DOI:10.1002 / CSSC.201500830
  4. 巴雷卡,D。等。Fe2O3-TiO2纳米异质结构光阳极用于高效太阳能水氧化。高级材料接口N / A-N / A(2015)。DOI:10.1002 / ADMI.201500313
  5. Michaux, K. E. et al. Visible Photoelectrochemical Water Splitting Based on a Ru(II) Polypyridyl Chromophore and Iridium Oxide Nanoparticle Catalyst. The Journal of … (2015). doi:10.1021/acs.jpcc.5b05711
  6. Luo, J. et al. Solution Transformation of Cu2O into CuInS2 for Solar Water Splitting. Nano Lett15,1395–1402 (2015).
  7. Schoen, D. T., Atre, A. C., García-Etxarri, A., Dionne, J. A. & Brongersma, M. L. Probing Complex Reflection Coefficients in One-Dimensional Surface Plasmon Polariton Waveguides and Cavities Using STEM EELS. Nano Lett15,1-8(2014)。
  8. Kim,D. W.等人。用氧化铁氧化铁的绿色光电化学氧化。ACS Nano 141203161851003(2014)。DOI:10.1021 / NN503869N
  9. Azevedo, J. et al. On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ. Sci.7,4044–4052 (2014).
  10. Yang, X. et al. Improving Hematite-based Photoelectrochemical Water Splitting with Ultrathin TiO 2by Atomic Layer Deposition. Acs Appl Mater Inter 140804065734002 (2014). doi:10.1021/am500948t
  11. Klahr, B. & Hamann, T. Water Oxidation on Hematite Photoelectrodes: Insight into the Nature of Surface States through In Situ Spectroelectrochemistry. J. Phys. Chem. C118,10393–10399 (2014).
  12. Zandi,O.,Beardslee,J.A。&Hamann,T.底物依赖于超薄α-Fe 2 O 3电极。J. Phy。化学。C 140501145249004(2014)。DOI:10.1021 / JP4116657
  13. Tilley,D. S.&Grätzel,M.氧化钌氧化物氢气进化催化复合亚铜氧化物水分解光致溶剂。高级功能... 1-9(2014)。DOI:10.1002 / ADFM201301106
  14. Yang,X.,Du,C.,Liu,R.,谢,J.&Wang,D。催化剂装饰光电化学水分裂的平衡光伏发电和电荷转移增强:赤铁矿/ MNOX组合的案例研究。催化作用304,86-91(2013)。
  15. Liu, M., Nam, C.-Y., Black, C. T., Kamcev, J. & Zhang, L. Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells. J. Phys. Chem. C 130610143036005 (2013). doi:10.1021/jp404032p
  16. Riha, S. C. et al. Atomic Layer Deposition of a Sub-Monolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite. ACS Nano 130212010712000 (2013). doi:10.1021/nn305639z
  17. RIHA,S. C.,缺乏Vermeer,M.J.,Pellin,M.J.,Hupp,J.T.&Martinson,A. B.F。使用透明分布集电流器的赤铁矿的光氧化水。ACS Appr Mater Inter5,360–367 (2013).
  18. Klug, J. A. et al. Low temperature atomic layer deposition of highly photoactive hematite using iron(iii) chloride and water. J. Mater. Chem. A1,11607 (2013).
  19. Maijenburg, A. W. et al. Electrochemical synthesis of coaxial TiO2-Ag nanowires and their application in photocatalytic water splitting. J. Mater. Chem. A (2013). doi:10.1039/c3ta14551d
  20. Klahr,B.,Gimenez,S.,Fabregat-Santiago,F.,Bisquert,J.&Hamann,T.W.与“共染料赤铁矿电极水氧化的光电化学和阻抗光谱研究。J AM Chem SoC134,16693–16700 (2012).
  21. Paracchino, A. et al. Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy & Environmental Science5,8673–8681 (2012).
  22. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy & Environmental Science5,7626-7636(2012)。
  23. Klahr,B. M.,Martinson,A. B.F.&Hamann,T.W.用原子层沉积制备的超薄膜氧化铁太阳能电池的光电化学研究。兰姆尔27,461-468(2011)。
  24. Liu, R. et al. Water Splitting by Tungsten Oxide Prepared by Atomic Layer Deposition and Decorated with an Oxygen-Evolving Catalyst. Angew. Chem. Int. Ed.50,499–502 (2010).